LCNN: Low-level Feature Embedded CNN for Salient Object Detection
نویسندگان
چکیده
In this paper, we propose a novel deep neural network framework embedded with low-level features (LCNN) for salient object detection in complex images. We utilise the advantage of convolutional neural networks to automatically learn the high-level features that capture the structured information and semantic context in the image. In order to better adapt a CNN model into the saliency task, we redesign the network architecture based on the small-scale datasets. Several low-level features are extracted, which can effectively capture contrast and spatial information in the salient regions, and incorporated to compensate with the learned high-level features at the output of the last fully connected layer. The concatenated feature vector is further fed into a hinge-loss SVM detector in a joint discriminative learning manner and the final saliency score of each region within the bounding box is obtained by the linear combination of the detector’s weights. Experiments on three challenging benchmarks (MSRA-5000, PASCAL-S, ECCSD) demonstrate our algorithm to be effective and superior than most low-level oriented state-of-the-arts in terms of P-R curves, F-measure and mean absolute errors.
منابع مشابه
RGB-D Salient Object Detection Based on Discriminative Cross-modal Transfer Learning
In this work, we propose to utilize Convolutional Neural Networks (CNNs) to boost the performance of depth-induced salient object detection by capturing the high-level representative features for depth modality. We formulate the depth-induced saliency detection as a CNN-based cross-modal transfer problem to bridge the gap between the " data-hungry " nature of CNNs and the unavailability of suff...
متن کاملA Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image
Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...
متن کاملSaliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs
This paper proposes a novel saliency detection method by combining region-level saliency estimation and pixel-level saliency prediction with CNNs (denoted as CRPSD). For pixel-level saliency prediction, a fully convolutional neural network (called pixel-level CNN) is constructed by modifying the VGGNet architecture to perform multiscale feature learning, based on which an image-to-image predict...
متن کاملRich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation Tech Report (v5)
Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to th...
متن کاملMSDNN: Multi-Scale Deep Neural Network for Salient Object Detection
Salient object detection is a fundamental problem and has been received a great deal of attentions in computer vision. Recently deep learning model became a powerful tool for image feature extraction. In this paper, we propose a multi-scale deep neural network (MSDNN) for salient object detection. The proposed model first extracts global high-level features and context information over the whol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1508.03928 شماره
صفحات -
تاریخ انتشار 2015